B-spline quasi-interpolation based numerical methods for some Sobolev type equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spline-based numerical treatments of Bratu-type equations

Three different spline-based approaches for solving Bratu and Bratu-type equations are presented. The classical cubic spline collocation method, an adaptive spline collocation on nonuniform partitions, and an optimal collocation method are derived for solving Bratu-type equations. Numerical examples are presented to verify the efficiency and accuracy of these methods when compared to other nume...

متن کامل

INTERPOLATION BY HYPERBOLIC B-SPLINE FUNCTIONS

In this paper we present a new kind of B-splines, called hyperbolic B-splines generated over the space spanned by hyperbolic functions and we use it to interpolate an arbitrary function on a set of points. Numerical tests for illustrating hyperbolic B-spline are presented.

متن کامل

Inverse B-spline interpolation

B-splines provide an accurate and efficient method for interpolating regularly spaced data. In this paper, I study the applicability of B-spline interpolation in the context of the inverse interpolation method for regularizing irregular data. Numerical tests show that, in comparison with lower-order linear interpolation, B-splines lead to a faster iterative conversion in under-determined proble...

متن کامل

Numerical Solution for Nonlocal Sobolev-type Differential Equations

We present a numerical approximate solution to Sobolev-type differential equation subject to nonlocal initial boundary conditions. A Laplace transform method is described for the solution of considered equation. Following Laplace transform of the original problem, an appropriate method of solving differential equations is used to solve the resultant time-independent modified equation and soluti...

متن کامل

Numerical integration using spline quasi-interpolants

In this paper, quadratic rules for obtaining approximate solution of definite integrals as well as single and double integrals using spline quasi-interpolants will be illustrated. The method is applied to a few test examples to illustrate the accuracy and the implementation of the method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2016

ISSN: 0377-0427

DOI: 10.1016/j.cam.2015.06.015